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Abstract. NR-Alpha is a prototype of a surgical instrument server nurse robot.
NR-Alpha is designed to provide to the surgeon the demanded surgery instru-
ments. NR-Alpha perceives the surgeon’s voice, recognizes the name of the in-
strament demanded and starts to Jook for the demanded instrument on the work-
ing area; once localized the instrument, NR-Alpha grapes it and finally reaches
the hand of the surgeon to give him the demanded instrumen. NR-Alpha is com-
posed by three main modules: Artificial Vision Module (AVM), Voice Recogni-
tion Module (VRM) and Control Module (CM). In this paper, we describe how
the VRM module could be implemented. To recognize the name of the instru-
ment pronounced by the surgeon, VRM uses a dynamic associative memory
(DAM). This DAM stores associations between a voice signals that encode the
name of a surgery instrument and images of the corresponding instrument. Once
the associative memory is trained, we would expect that when the surgeon pro-
nounces, for example, “Forceps” the associative memory would recall the image
of a forceps. Subsequently, the image recalied by the DAM could be used to lo-
calize the instrument. In order to test the accuracy of the proposal, we firstly train
the DAM with associations of the instrument we would like the DAM learned.
We then use a benchmark composed by 1800 voice signals to test the perform-
ance of the proposal.

1 Introduction

Robotics technology is developing dramatically. In this sense, a robot system is an al-
ternative since accuracy for sensors and control system is increasing and computer
technology for robots is rapidly developing. Robots are been used in increasingly com-
plex surgical procedures. However these robots are not autonomous machines that
carry out simple, pre-programmed instructions.

NR-Alpha is a surgical instrument server nurse robot (under development) com-
posed by three main modules: An Artificial Vision Module (AVM), for the details refer
to [11], A Voice Recognition Module (VRM) and Control Module (CM). In this paper
we particularly emphasize on the implementation of the VRM module by means of re-
ported associative memories.

An associative memory is a particular kind of neural network specially designed to
recall output patterns in terms of input patterns that might appear altered by some kind
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of noise, refer for example to [1], [2], [3]. [4], [6], [7] and [8]. Most of these associative
models have several constraints that limit their applicability in real life problems. In
order to achieve the best performance the Input patterns have to satisfy several condi-
tions. Recently in [6] and [7] a new dynamic associative mode} (DAM) was proposed.
This model can be used to recall a set of images even if these images suffer affine
transformations. This model also has been applied to different pattern recognition prob-
lems. Refer for example to [6], [9] and [10].

In this paper we describe how the proposed associative model was implemented into
the VRM for recognizing the name of the instrument pronounced by the surgeon. This
DAM stores associations between a voice signals that encode the names of a surgery
instruments and images of them. Once trained the associative memory we expect that
when the surgeon says for example “Forceps” the associative memory recall the image
of a forceps. Subsequently, the image recalled by the DAM could be used to localize
the instrument. In order to test the accuracy of the proposal, we firstly train the DAM
with associations of the instrument we would like the DAM learned, then during rec-
ognition, we use a benchmark composed by 1800 voice signals. :

2 Description of the dynamic associative model

This model is not an iterative model as Hopfield’s model [1]. The model emerges as an
improvement of the model proposed in [4] which is not an iterative model. Let

xeR" and yeR” an input and output pattern, respectively. An association be-
tween input pattern X and output pattern y is denoted as ( xk,y]‘ , where % is the

corresponding association. Associative memory: W is represented by a matrix whose

cci_n‘?ortc\avifl;sm 1% can bewseen as the synapses of the neural network. If

xEyvh=hoop then is auto-associative, otherwise it is hetero-associative. A

distorted yersion of a pattern = to be recalled will be denoted as x. If an associative

memory is fed with a distorted version of = and the output obtained is exactly
» we say that recalling is robust.

o

2.1 Building the associative memory

This model is bio-inspired in some biological ideas of human brain. Humans, in gen-
eral, do not have problems recognizing patterns even if these are altered by noise. Sev-
eral parts of the brain interact together in the process of learning and recalling a pattern,
This model defines several interacting areas, one per association we would like the
memory to learn. Also integrate the capability to adjust synapses in response to an in-
put stimulus. Before an input pattern is learned or processed by the brain, it is hypothe-
sized that it is transforthed and codified by the brain. This process is simulated using
the procedure introduced in [5].
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This procedure allows computing codified patterns from mput and output pattemns
denoted by X and ¥ respectively; X and y are de-codifying patterns. Codified and

de-codifying patterns are allocated in different interacting areas and d defines of much
these areas are separated. On the other hand, J determines the noise supported by our

model. In addition a simplified version of x* denoted by s, is obtained as:
5, =s(x*) =mid x’ @

where mid operator 18 defined as mid x= Xntysz”

When the brain is stimulated by an input pattern, some regions of the brain (interact-
ing areas) are stimulated and synapses belonging to those regions are modified. In this
model, the most excited interacting area is call active region (AR) and could be esti-
mated as follows:

@

ar= () =erg{ minls ()=

Once computed the codified patterns, the de-codifying patterns and s, we can com-

pute the synapses of the associative memory as follows:
Let {(g‘ ,y")lk =1,..., p},i" eR",7* eR” a fundamental set of associations

(codified patterns). Synapses of associative memory W are defined as:
W=7~ %, 3
In short, building of the associative memory can be performed in three stages as:

1. Transform the fundamental set of association into codified
and de-codifying patterns by means of previocusly described
Procedure 1.

2. Compute simplified versions of input patterns by using egqua-
tion 1.

3. Build W in terms of codified patterns by using equation 3.

2.2 Modifying synapses of the associative model

In this model, synapses could change in response 1o an input stimulus; but which syn-
apses should be modified? There are synapses that can be drastically modified and they
do not alter the behavior of the associative memory. In the contrary, there are synapses
that only can be slightly modified to do not alter the behavior of the associative mem-
ory; we call this set of synapses the kernel of the associative memory and it is denoted

by K, . In this model are defined two types of synapses: synapses that can be modi-

fied and do not alter the behavior of the associative memory and synapses belonging to
the kemnel of the associative memory. These last synapses play an important role in re-
calling patterns altered by some kind of noise.

Let K, € R" the kernel of an associative memory W . A component of vector
K is defined as:
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kw, =mid(wif),j=l,...,m @
Synapses that belong to K, are modified as a response to an input stimulus. Input

patterns stimulate some ARs, interact with these regions and then, according to those
interactions, the corresponding synapses are modified. Synapses belonging to K, are

modified according to the stimulus generated by the input pattern. This adjusting factor
is denoted by Aw and can be computed as:

Aw:A(x):s(i“")—s(x) @)
where ar is the index of the AR.

Finally, synapses belonging to K, are modified as:

K, =K, @(Aw-Awa,d) (6)
where operator @ is defined as x®e =X, +eVi=1,...,m. As you can appreciate,
modification of K, in equation 6 depends of the previous value of Aw denoted by
Aw,, obtained with the previous input pattern. Onee trained the DAM, when it is used

by first time, the value of Aw,,, is set to zero.

2.3 Recalling a pattern using the proposed model

Once synapses of the associative memory have been modified in response to an input
pattern, every component of vector ¥ can be recalled by using its corresponding input

vector X as:
ﬁ:mid(lvij.+)'€,,),j:1,...,l1 (7
In short, pattern § can be recalled by using its comresponding key vector X or ¥ in
six stages as follows:

1. Obtain index of the active region ar by using equation 2.

2. Transform X' using de-codifying pattern X by applying the

8oar

following transformation: %f =x*+%

W

. Compute adjust factor /_\.w:,ﬂ(i) by using equation 5.

4. Modify synapses of associativé memory W that belong to Kw
by using equation 6.

5. Recall pattern ' by using equation 7.

6. Obtain y* by transforming ¥° using de-codifying pattern §*

by applying transformation: yk = yk -y7.

The formal set of prepositions that support the correct functioning of this dynamic
model and the main advantages again other classical models can be found in {12].
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3 Experimental results

Several experiments were performed in order to test the accuracy of the proposal when
a person pronounces the name on the instrument he needs. Firstly, we recorded a col-
lection of signal voices. We recorded the name of five different instruments (backcock
forceps, sponge forceps, adson forceps, allis forceps and rat tooth forceps).

" Each signal voice was recorded in a wav file (PCM format, 44.1 KHz, 16 bits and
mono). In average the duration of each sample was of 450 ms. Some samples of the
signal voices are shown in Fig. 1. In total, 1960 signals were analyzed through the ex-
periments.

b © (d) (e)
Fig. 1. Signal voice from the different instruments used to train the associative memory. (a) Ad-
son. (b) Allis. (¢) Backeock. (d) Rat tooth. (e) Sponge.

In addition, we proceeded to obtain an image of each instrument in order to associ-
ate it with its corresponding signal voice. Some images are shown in Fig 2.

(2 (b) (©) ‘ (@ ®
Fig. 2. Images from the different instruments used to train the associative memory. (a) Adson.
(b) Allis. (c) Backcock. (d) Rat tooth. (e) Sponge.

In order to train the associative memory, we firstly transformed the signal sound of
cach instrument into a raw vector and the image of each instrument into a raw vector.
Then each signal sound vector was associated with its corresponding image vector. Fi-
nally the associate memory was trained using the procedures described in section 2.

Experiment 1. In this experiment, we verified if the associative model was capable
to recall the fundamental set of associations, in other words, if the DAM was able to
recall the image associated to the signal voice used as input pattem. In average, the ac-
curacy of the proposal in this experiment was of 100%, some examples are shown in
Fig. 3.

Image recalled

Signal voice used Image recalled Signal voice used
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Experiment 2. In this experiment, we verified if the DAM was able to recall the im-
age associated to the signal voice used as input pattern, even if the signal voice is al-
tered by additive noise (AN). To do this, each signal voice previously recorder was
contaminated with additive noise altering from 2% until 90% of the information. 89
new samples were generated from each signal voice already recorder, This new set of
signal voices was composed for 440 samples, some examples are shown in Fig. 4. In
average, the accuracy of the proposal using this set of signal voices was of 71.3%.

W e - TR o

Fig. 4. (a-c) Signal voice of the adson instrument contaminated with additive noise.

Experiment 3. In this experiment, we verified if the DAM was able to recall the
image associated to the signal voice used as input pattern, even if the signal voice is al-
tered by subtractive noise (SN). To do this, each signal voice previously recorder was
contaminated with subtractive noise altering from 2% until 90% of the information. 89
new samples were generated from each signal voice already recorder. This new set of
signal voices was composed for 440 samples, some examples are shown in Fig. 5. In
average, the accuracy of the proposal using this set of signal voices was of 71.6%.

(a) (b) (©)

Fig. 5. (a-c) Signal voice of the allis instrument contaminated with subtractive noise.

Experiment 4. In this experiment, we verified if the DAM was able to recall the
image associated to the signal voice used as input pattern, even if the signal voice is al-
tered by mixed noise (MN). To do this, each signal voice previously recorder was con-
taminated with mixed noise altering from 2% untif 90% of the information. 89 new
samples were generated from each signal voice already recorder. This new set of signal
voices was composed for 440 samples, some examples are shown in Fig. 6. In average,
the accuracy of the proposal using this set of signal voices was of 79.55%.
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Experiment 5. In this experiment, we verified if the DAM was able to recall the
image associated to the signal voice used as input pattern, even if the signal voice is al-
tered by Gaussian noise (GN). To do this, each signal voice previously recorder was
contaminated with Gaussian noise altering from 2% until 90% of the information. 89
new samples were generated from each signal voice already recorder. This new set of
signal voices was composed for 440 samples, some examples are shown in Fig. 7. In
average, the accuracy of the proposal using this set of signal voices was of 74%.

Fig. 7. (a-c) Signal voice of the rat tooth instrument contaminated with Gaussian noise.

Experiment 6. In this experiment, we verified if the DAM was able to recall the
image associated to the signal voice used as input pattern, even if the signal voice is re-
corded at different tempo. To do this, each signal voice previously recorder was re-
corded 10 times. Ten new deformed samples (DEF) were recorded from each signal
voice already recorder. This new set of signal voices was composed of 200 samples,
some examples are shown in Fig. 8. In average, the accuracy of the proposal using this
set of signal voices was of 32%.

Experiment 7. Despite of the low accuracy obtained, the results are encouraging
because in more than the 50% of the samples, used on each experiment, a human is un-
able to perceive the name of the instrument. However, in order to increase the accuracy
of the proposal we decided to apply the technique described in [10] for face recognition
to the voice recognition problem. In [10], the authors suggest to compute a simplified
version of the DAM model by using a random selection of stimulating points. For the
details, refer to [10].

We tested again the accuracy of the proposal by using 1, then 2, them 3 until 50
stimulating points. In Fig. 9 it is shown the results obtained. As you can appreciate, the
accuracy increases when the number of stimulating points increases. When we used
more than 20 stimulating points the accuracy of the proposal was almost of 100% for
the samples altered by additive, subtractive, mixed and Gaussian noise. Also we can
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appreciate that the accuracy slightly increases to 50% for the temporal deformed voice
patterns.

Fig. 8. (a-c) Deformed signal voice of the sponge instrument.

Accuracy of the proposal
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Fig. 9. Behavior of the proposal with the collections of aliered signal voices using different
number of stimulation points.

4 Conclusions

We have described how the VRM of NR-alpha prototype robot was implemented. We
have demonstrated that associative memories, particularly dynamic associative memo-
ries can be used as powerful tools for voice recognition.

The accuracy of the proposed model was tested by using different sets of complex
signal sounds and the result obtained supports the robustness of the proposals. We have
studied the behavior of the model when a voice signal is contaminated with additive,
subtractive, mixed, Gaussian noise and temporal deformations. The presented results
are highly encouraged.

Nowadays we are applying some preprocessing techniques to increase the accuracy
of the proposal when the voice signals are pronounced at different tempo by different
people. Also we are integrating the VRM and AVM modules to localize an instrument
using a voice command,
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